
1

2 3

Remember, all characters, places, and items portrayed in this game are purely from our
caffeine-fueled imaginations. Any resemblance to actual persons, living or dead, or actual
events is purely coincidental. And by “coincidental,” we mean “we totally made this up.”

Heads up: Choking Hazard - Small parts. Not for kids under 3 years or adults who still put
random things in their mouths.

This game is intended for ages 12 and up. Or ages 8 to 80 if you’re cool like that.

Printed in Japan

First Edition: May 2023

ISBN: 978-0-WeLoveThe80s-1

For a good time, check out more Soroban and its sweet documentation at our website,
https://soroban.stellar.org

This may be a partial booklet, to view all available skirmishes visit
https://rpciege.com/booklet/kit-and-caboodle

WELCOME TO THE WORLD OF RPCIEGE!
In an age where heroism is a currency, and villains lurk in the vast shadows of towering castles, exists the awe-

inspiring realm of RPCiege. Stretching across diverse territories and brimming with secrets, this world will
challenge every strand of your tactical prowess, daring you to rise, conquer, and rule!

Born from the ashes of the great conflict, a time of chaos, our world is scattered into numerous territories. Each
unique in culture, resources, and strategic value. These lands are not void of leadership but are dominated by

Overlords - ruthless individuals with an insatiable thirst for power.

But fear not, brave player, for you are the beacon of hope in this tumultuous world. You are one of the legendary
heroes, entrusted with the noble mission to challenge these Overlords, reclaim the territories, and restore peace to

the realm of RPCiege.

In your hands, you hold a deck of cards, each possessing unique abilities and power scores. These are your armies,
your fortresses, your spies, and your diplomats. Use them wisely, strategize your attacks, fortify your defenses, form

alliances, or break them when necessary. The key to victory lies in the balance of power and cunning.

But beware! The Overlords will not cede their territories easily. They too hold their own decks, filled with terrifying
creatures and devious traps. Each turn, each move will lead you either one step closer to your destiny or into the

jaws of defeat.

In the world of RPCiege, fortune favors the bold, and the cunning are crowned as kings and queens. So, delve deep,
take command, and let your legend echo throughout the realm!

Welcome, brave adventurer, to your destiny. Welcome, to RPCiege!

Remember: In RPCiege, your mind is the ultimate weapon. Play wisely!

https://soroban.stellar.org
https://rpciege.com/booklet/kit-and-caboodle

4 5

In order to issue digital collectible card awards we will observe contract invocations for a funded
MAINNET Stellar public key at the final argument slot of the contract call. For game contracts we
provide this will be an _nft_dest argument. For contracts you develop don’t forget to include an
Address as the contract’s final argument

Always use our official RPC endpoint when enacting your attacks
https://testnet.rpciege.com along with the TESTNET network passphrase
Test SDF Network ; September 2015

Getting Started with Soroban

Install and configure Rust and
the Soroban CLI.

Setup Hello World

Soroban RPC Soroban
CLI

High-Level
Overview

Deploy to
Testnet

Create your first Soroban contract.

The RPC service allows you to
communicate directly with Soroban
via a JSON RPC interface.

Soroban CLI is the command
line interface to Soroban.

Descriptions of
key Soroban Concepts.

Deploy and invoke your contracts
on the Testnet network.

Before you begin your journey, you need only take your first step. If you’re new here - these
tips will be your guidestones.

If you’re prepared, continue on. TO BATTLE!

SHH. KEEP IT DOWN!

1.

2.

3.

We’re glad you’re here, we desperately need your help. We’re
currently engaged in a siege of the Soroban RPC. The RPCiege!
Contained within this booklet are instructions for tackling many
terrific and terrible skirmishes. There are only three critically
important pieces of information you’ll need to remember.

You can claim your NFT cards wherever you wish however we’ve built a simple claim page over at
rpciege.com/claim to aid in the claiming process

Cards will be issued as rare animated assets for three weeks after the release of each
Skirmish at which point they will begin being issued as common static assets.

BEWARE

https://soroban.stellar.org/docs/getting-started/setup
https://soroban.stellar.org/docs/getting-started/hello-world
https://soroban.stellar.org/docs/reference/rpc
https://soroban.stellar.org/docs/reference/soroban-cli
https://soroban.stellar.org/docs/fundamentals-and-concepts/high-level-overview
https://developers.stellar.org/docs/smart-contracts/getting-started/deploy-to-testnet
https://rpciege.com/claim

6 7

For battle 1 all you’ve got to do is submit a contract invocation. That’s it. Remember it needs to
include as its final argument an Address of your mainnet Stellar public key where you’d like to
receive your card pack for today’s skirmish, but that’s the only requirement.

Here’s an example contract, just because I like you

Skirmish I

Welcome to day 2 of the legendary
RPCiege! For today’s skirmish, your
goal is to create and invoke a contract
that returns the String 1694-1727.

Don’t forget the three rules but other
than that good luck and go nuts!

No contract cheat codes today but
here’s a link to some documentation you
might find useful:

Skirmish II

String in soroban_sdk - Rust
String is a contiguous growable array type
containing u8s.
https://docs.rs/soroban-sdk/latest/soroban_sdk/struct.String.html

#![no_std]

use soroban_sdk::{contract, contractimpl, Address, Env};

#[contract]
pub struct Contract;

#[contractimpl]
impl Contract {
 pub fn run(_env: Env, _nft_dest: Address) {}
}

https://docs.rs/soroban-sdk/latest/soroban_sdk/struct.String.html

8 9

Morning dawns on day 3 of the RPCiege. For today’s quarrel we’re enacting a new tactic:
brute force. To win the battle you must submit an invocation to the game_3 function of the
CDUZZ624GWOCKRWO2POLWHRNM2YKOTBH7D6MXQIRDXQICJ46BXNM6JBQ contract.

Skirmish III
Here’s that contract’s Rust code.

No spoilers but I’m telling you now that writing a test against this contract will be your best ally.

#![no_std]

use soroban_sdk::{
 contract, contracterror, contractimpl, panic_with_error,
 xdr::ToXdr, Address, Env, Symbol,
};

#[contract]
pub struct Contract;

#[contracterror]
#[derive(Copy, Clone, Debug, Eq, PartialEq, PartialOrd, Ord)]
#[repr(u32)]
pub enum Error {
 MissingPew = 1,
 UsedPew = 2,
}

#[contractimpl]
impl Contract {
 pub fn run(
 env: Env,
 symbol: Symbol,
 _nft_dest: Option<Address>
) -> Result<(), Error> {
 if env.storage().persistent().has(&symbol) {
 panic_with_error!(env, Error::UsedPew);
 }

 let bytes = symbol.clone().to_xdr(&env);
 let hash = env.crypto().sha256(&bytes);

 let mut i = 0;
 let mut has_pew = false;

 for v in hash.clone().iter() {
 if v == 112
 && hash.get(i + 1).unwrap_or(0) == 101
 && hash.get(i + 2).unwrap_or(0) == 119
 {
 has_pew = true;
 }
 i += 1;
 }

 if !has_pew {
 panic_with_error!(env, Error::MissingPew);
 } else {
 env.storage().persistent().set(&symbol, &true);
 }

 Ok(())
 }
}

10 11

A moment of silence for the comrades we’ve lost along the way . And
onward into day 4 of the RPCiege! Today we employ the age-old tactic
of meddling with the city’s supply chain. We need to disrupt their storage
and events. For that, we’ll be calling the set and get functions on the
CDOX4TLMDKYURVH7T3O5YWACYKPPMZ5HHC6RNUXHGWTSZ7APFZTHP6J4 contract.

Skirmish IV

I tried to acquire the contract code itself but was unable to. All I got was this
instructional slip from inside an otherwise relatively bland fortune cookie.

It would appear you’ll be on your own for this one.

env.storage().temporary().set(&bytes, &rand_array_store);
env.events().publish((bytes.clone(),), rand_array_event);

soroban contract invoke --id <contract-id> --source <saved-identity> --network <saved-network> -- <?function-name> -h

https://github.com/stellar/soroban-tools/blob/main/docs/soroban-cli-full-docs.md#soroban-events
https://soroban.stellar.org/api/methods/getLedgerEntries

 Good luck...

Skirmish V

Welcome to the final boss!
You’ve made it so far, and you’ve
earned one final challenge.

Prepare thyself!

12 13

1. Issue Two New Assets
2. Wrap the Assets for Use as Soroban Tokens
3. Deploy New Liquidity Pool Contract
4. Deposit into the LP
5. Find Your Deposited Tokens
6. Learn About Callback Functions
7. The Problem in this Instance
8. Wait... What is Actually Happening Here!???
9. Now, Go Get Your Tokens

The Task at Hand

You’ll need to brush off your “regular Stellar” hats for this part. We’ll wait while you get ready
(but the other players probably won’t, so don’t dawdle).

You’ll need (at least) two accounts for this (any randomly generated addresses will do, and we’ll
refer to them as the rpciege05 account and the issuer account). There are a few different
ways you could go about this step, but here it is quick and simple:

Note: For the rest of this document, we may reference these two assets with the
codes assetA and/or assetB. You can use those asset codes, or choose your own.
When you read assetA or assetB, make sure you mentally think about which asset
that might be for your use. Importantly, use your assets consistently as assetA or
assetB, and don’t swap them around.

Issue Two New Assets
TL;DR

Today’s first task is to deploy a new Liquidity Pool using our deployer contract
CBNTWL5RFKILVFLBNCF7EYHAN7RTHWA3ZXHWWLTLHNX5E6HBY3DBQHCI.
This contract will emit an event containing more “instructions.”

Good luck!

1. Use the Stellar Laboratory to interact with the testnet network.

2. Use the Create Account page to generate two new keypairs, and fund both of them
using Friendbot. Don’t forget to copy/paste those public/secret keys somewhere for
future use.

https://laboratory.stellar.org/#?network=futurenet

14 15

3. Use the Build Transaction page to create a transaction using these options:

○ Source Account: use your rpciege05 account for this

○ Sequence Number: click the fetch next sequence number... button

○ Base Fee: Normally, leaving this set to 100 is totally suitable for testnet operations.
 You are, of course, free to choose a higher base fee. (This can help ensure transaction
 success in times of high network volume.)

○ Operations:
 ■ Add a Change Trust operation, with an Asset Code of your choosing,
 and the issuer public key for the Issuer Account ID
 ■ Duplicate this to a second Change Trust operation, changing the Asset
 Code, but keeping the same Issuer Account ID
 ■ Add a Payment operation, using the rpciege05 public key for the
 Destination, either Asset from the previous operations, any Amount you like
 (greater than 1, though, otherwise the stroop-maths get confused), and the issuer
 public key for the Source Account
 ■ Duplicate this to a second Payment operation, using the other Asset from
 the previous operations (you could change the Amount, too, if you want)

○ Altogether, that makes a transaction that contains two Change Trust operations and
 two Payment operations for two unique assets issued by the issuer account.

4. Click the Sign in Transaction Signer button at the bottom of the page. You’ll be taken
 to the Sign Transaction page, where you will need to copy/paste the secret keys of both
 the rpciege05 and issuer keypairs.

5. Click the Submit in Transaction Submitter button at the bottom of the page. You’ll be taken
 to the Submit Transaction page, where you can click the Submit Transaction button, and
 wait for the success confirmation.

Note: If your transaction is having trouble making it to the ledger (you might get a timeout error
code 500), you can try increasing the Base Fee of the transaction to help boost your chances
of a successful transaction.

Congratulations! You’ve now minted two brand new assets into existence on the Stellar
network!

Note: We breezed through this part, since asset issuance isn’t really the primary point
of today’s skirmish. If you’re interested in learning more, check out Level 01 of Stellar
Quest for lots of quality payment- and asset-related content.

https://quest.stellar.org/learn
https://quest.stellar.org/learn

16 17

Soroban makes it very easy to interact with previously issued Stellar assets. But, these
assets do need to be “wrapped” first in order to make them available for use in Soroban. This
process is quick and painless using the soroban-cli.

First, let’s set up the network, accounts, etc. we will use for the CLI. This isn’t strictly
necessary, but will make everything else that much easier.

create an `rpciege` network configuration that includes the network passphrase and rpc url
soroban config network add \
 --rpc-url https://testnet.rpciege.com \
 --network-passphrase ‘Test SDF Network ; September 2015’ \
 rpciege

create an `rpciege05` identity configuration from the corresponding secret key
soroban config identity add \
 --secret-key \
 rpciege05
paste in the `rpciege05` secret key when prompted

create an `issuer` identity configuration from the corresponding secret key
soroban config identity add \
 --secret-key \
 issuer
paste in the `issuer` secret key when prompted

Wrap the Assets for Use as Soroban Tokens

Now that we've got our accounts and network in place, we can actually get to
work! Hooray! You'll need to run the following command twice, once to wrap
each of the assets you trusted and paid in the transaction earlier.

soroban contract asset deploy \
 --network rpciege \
 --source rpciege05 \
 --asset <asset-code>:<asset-issuer-public-key>

In response to a successful invocation, you'll get a contract address of the wrapped asset that can
be used in Soroban. These contracts will have the same interface and functions available as any
token using the Stellar Asset Contract. You should copy/paste these contract addresses into a safe
place for later use.

So, let’s take a breath and recap the progress we’ve made so far:

• You used your rpciege05 account to create two new trustlines for assets.
• You used your issuer account to make payments of those assets to your rpciege05 account.
• You used the soroban-cli to wrap those assets so they can be used as Soroban tokens.

Now, you’re ready to actually deploy a liquidity pool!

https://soroban.stellar.org/docs/reference/soroban-cli
https://soroban.stellar.org/docs/reference/interfaces/token-interface

18 19

When someone builds a liquidity pool project (Uniswap, Sushi, etc.),
they want all the liquidity pools to follow the same logic. So, instead
of writing a unique contract foreach and every asset pair (as trivial as
that task might be), a “vanilla” LP contract’s bytecode can be installed
on the network. This bytecode will then be duplicated and initialized as
a new contract for each new asset pair LP.

Our deployer contract (sometimes called a “factory”) will take care of
all that work foryou! (You’re welcome.) When you invoke the new_
liqpool function of our deployer contract, the deployer contract:

1. Ensures the deployer contract has been initialized. (We’ve taken

care of this step already, so you don’t have to worry about it. But, the
deployer contract still does make that check.)

2. Uses Soroban’s Env::deployer() function to (you guessed it)
deploy the pre-installed WASM bytecode to a new contract (using
the salt you provided atinvocation-time to generate the new pool’s
contract address).

3. Sets up a client for the newly deployed LP contract, and runs the
initialize function using the token contract addresses you
provide at invocation-time.

4. Uses Soroban’s Env::storage()utilities to store the contract
address of the newly deployed LP (this helps us to check your work,
don’t stress about it too much).

5. Sends back to the invoker the contract_address for their
new liquidity pool, ready to receive deposits and be used by users.

Deploy New

Liquidity Pool Contract

To make this happen, first we need some salt (the spice of life)! Soroban contract addresses are (at least partly) determined by
the address of the contract’s deployer. Since we are deploying many LP contracts from the same deployer contract, we’ll want to
make sure there is some unique entropy to generate each contract adress from. You’ll need to supply a 32-byte (64-characters)
hex string as part of the new_liqpool invocation. If your system has openssl installed, you can use the following command
to generate something useable:

openssl rand -hex 32

Alternatively, you could hand-write your own, and see what fun words
you might be able to create from strictly hex characters. (I personally
like deadbeef !)

In any case, once you have a salt of some kind, you are ready to get
into the pool! You’ll need to know the contract_address for the
two assets you previously issued.

Note: It’s been a while since we’ve mentioned it, so it’s worth repeating:
CBNTWL5RFKILVFLBNCF7EYHAN7RTHWA3ZXHWWLTLHNX5E6HBY3DBQHCI is the
contract_id of our deployer contract. This is the invocation where it will do all the things
we described a few sentences ago (check for initialization, deploy a new instance of the pre-
installed bytecode, etc.).

20 21

soroban contract invoke \
 --network rpciege \
 --source rpciege05 \
 --id <lp-contract-id> \
 -- \
 new_liqpool \
 --salt <your-previously-generated-salt-hex> \
 --token_a <assetA-contract-address> \
 --token_b <assetB-contract-address>

Copy/paste the returned contract_address for use in later steps.

Amazing! You are the proud creator of a brand new liquidity pool! That wasn't even that hard,
right!? Now, we're ready to actually make a deposit! You'll want to decide on the amount of each
asset you'd like to deposit (and know how to convert that amount into). (The short and simple
explanation for stroops is that it's the "decimal precision" of an asset on the Stellar network. In
this case, multiply the amount you'd like to deposit by 10,000,000 to get the number of stroops
you should deposit.)

You can use the tools you've learned previously to figure out the proper way to invoke a function
on this LP contract. Here's how you can find the --help output for it:

soroban contract invoke \
 --network rpciege \
 --source rpciege05 \
 --id <lp-contract-id> \
 -- \
 --help

soroban contract invoke \
--network rpciege \
--source rpciege05 \
--id <lp-contract-id> \
-- \
swap \
--help

This will show you all the available
functions on the contract, and you can
add a function name after the
-- double-dash (it’s called a slop,
btw) to get explanations for each
required argument:

Deposit into the LP

https://developers.stellar.org/docs/glossary#stroop
https://github.com/clap-rs/clap/issues/971

22 23

From the looks of it, the deposit_liquidity function is most likely what we are after. Let's
invoke it and make a deposit of our two issued assets. Below, is an example depositing 100 units
of assetA and 200 units of assetB (I've already multiplied to arrive at 1,000,000,000 and
2,000,000,000 stroops of each asset, respectively).

Since we are the very first depositors into this liquidity pool, we get to determine the relative value
of each asset's reserves. We are depositing using a 1:2 ratio of assetA to assetB , but you
can deposit however much you like in yours. I've used 0 as the minimum arguments since there is
no possibility of slippage (i.e., there are no reserves that need to be calculated against). In a real-
world LP that already contains reserves of the pool assets, you would want to utilize some sensible
minimum amounts to ensure your assets retain the correct relative value during the deposit.

soroban contract invoke \
--network rpciege \
--source rpciege05 \
--id <lp-contract-id> \
-- deposit_liquidity \
--addr <rpciege05-account-public-key> \
--desired_a 1000000000 \
--min_a 0 \
--desired_b 2000000000 \
--min_b 0

Let's see the help output of our contract again, and see if it says
anything about how we can withdraw, or something like that:

That’s really strange... The only functions available are swap,
get_reserves, and deposit_liquidity. There’s not even a function
to make a withdrawal!? I’m starting to get nervous!

Let’s at least double-check the reserves, to make sure our deposit landed:

soroban contract invoke \
--network rpciege \
--source rpciege05 \
--id <lp-contract-id> \
-- --help

soroban contract invoke \
--network rpciege \
--source rpciege05 \
--id <lp-contract-id> \
-- get_reserves

Find Your Deposited Tokens

Well done! You've not only created a liquidity pool on Soroban, you've now also made an initial
deposit into it! You're on fire! Now, how do we get those sweet yields paid back to us!?

24 25

The output shows us that the LP holds ["1000000000","2000000000"] reserves of
assetA and assetB, respectively. So, at least the tokens aren't lost, right! They're in the
pool, where they "should" be?! (I'm not convincing myself to be calm, either, by the way.)

There is one more way to find some information about a given Soroban transaction: events!
Many transfers, deposits, and other functions programmed for Soroban will emit some type of
event that can be seen in the transaction metadata. Maybe our LP emits those events for
deposits. Let's cross our fingers, and head to command line!

Note: Events are like a smart contract "secret sauce" that can
provide a ton of information and insight into what's happening
with a contract. Once you're done with this skirmish, you should
definitely go read up on them some more!

You could get an event output from a Soroban invocation by passing --events in front of
the -- double-dash in your deposit_liquidity command. We understand, though, if
you're a bit hesitant to put even more of your hard-earned tokens at risk just in the hopes of
investigating further. Not to worry, you can also get events from the soroban-cli, no contract
invocation required.

soroban events \
--network rpciege \
--id <lp-contract-id> \
--start-ledger <ledger-number>

Aside from the contract ID, the only piece of information is what ledger number to start
your search from. You can get some key information from the RPC server, to help you
make an educated guess about what to use for this argument. We want to invoke the
getLatestLedger method of the RPC server. Soroban-RPC will accept HTTP POST
requests using the JSON-RPC 2.0 specification. You can make these requests using curl,
Postman, httpie, or whatever means you are comfortable with. The essence of what you
want to do is send a JSON object to the server, and look through the response for the latest
ledger number. The object you want to send should (for the getLatestLedger method)
include the fields jsonrpc , id , and method :

{
 "jsonrpc": "2.0", // this always has to be here, and should always b e `2.0`
 "id": 0, // you can use any integer here
 "method": "getLatestLedger" // this is the method we want executed
}

https://soroban.stellar.org/docs/basic-tutorials/events
https://soroban.stellar.org/docs/fundamentals-and-concepts/events
https://www.jsonrpc.org/specification

26 27

Here's how you might make the request using curl:

curl -X POST -H 'Content-Type: application/json' \
-d '{"jsonrpc":"2.0","id":0,"method":"getLatestLedger"}' \
https://soroban-testnet.stellar.org

An unofficial Soroban-RPC Postman collection is also available for use, and contains boilerplate
for the existing Soroban-RPC methods.

The returned object will contain a sequence key, and the associated value is the sequence
number of the most recently closed ledger on Tesetnet. If you've just invoked the deposit_
liquidity function of your LP, you should be able to just subtract a few ledgers from this
number and successfully get information about your deposit event.

If it's been some time since your LP invocation, you could look up your account at the horizon
endpoint for accounts, and use the last_modified_ledger field to make an educated guess
about what to use for this argument.

If it's been more than 24 hours since you deposited into your LP, the RPC server will likely not
have any record of that event. You'll need to look to Horizon instead, and find the transaction's
result_meta_xdr which contains the event output, as well. There are so many ways to get
details about events!

Back to the contract events we're looking for, you should see a CONTRACT event's output that
contains the topics deposit and your rpciege05 public key (it's in hex, instead of the more
common G... address format. But it's the same key, trust us). Awesome! We're on the right track.

This event has a pretty hefty amount of bytes associated with it... I wonder what's contained
there??! This can be a bit tricky to get meaningful text out of. But, you can accomplish what you
need in node.js pretty easily. is a great option for this!

let eventMessageBytes = Buffer.from('<hex-encoded-bytes>', 'hex');
console.log(eventMessageBytes.toString('utf-8'));

Reading the output... Oh no!!! We got scammed! Fortunately,
someone on the development team of this liquidity pool has given
us some clues as to how we can get our tokens back! Thank you,
kind sir or madam!

Before we get to that; a bit of theory (don't worry, we'll try to keep
it brief).

https://www.postman.com/gold-spaceship-283689/workspace/soroban/collection/5352332-9ccf291a-944a-4037-8655-1d6c35d20cf8?action=share&creator=5352332

28 29

A common convention in smart contract development is the use of
"callback functions." These are functions passed by the invoker of
the contract, which will be run as part of the atomic transaction (that
just means the "callback function" will be executed inside the initially
invoked function, and everything either fails or succeeds together).

In the Uniswap protocol for example, an app invoking the swap
function on a liquidity pool must provide its own swap_callback
function that will be run in the course of each swap invocation it
(the app) makes. Inside this callback function the app might get
authorization from the user, receive payment from the user, ask
the user about their favorite color, spend the user's gas money on
chocolate milk, or just about anything else. This function is a so-
called "callback" because it is provided as a parameter at the time of
invocation. Uniswap doesn't write the function, the app developer does.

The expectation of the Uniswap lp protocol is that the callback function
can do pretty much whatever it wants, as long as the lp gets paid
properly. For a successful swap to take place, the lp must get paid (at
least) the amount it expects of the counter asset, before it will send any
of the purchased asset anywhere.

Learn About Callback Functions The Problem in this Instance

These callbacks can be very powerful and useful tools, but they can also be made
to operate in unexpected ways if the original LP protocol (Uniswap v3 in this
case) doesn't do the proper checks. The contract we've written (the one that has
scammed you) is vulnerable to the same type of exploit that (nearly) hit Uniswap v3.

Note: The bug in Uniswap's code was detected by an audit before v3
was in production. This does make for an interesting case study, but no
real user funds were ever actually in danger of this vulnerability.

The liquidity pool contract we've written has a swap function which is expecting
to be invoked with a callback argument: that is, the address of a contract that
implements a swap_callback function. This callback can do whatever it likes, as
long as our liquidity pool is paid the proper amount of the counter asset by the time
the callback has finished.

Here's what this callback invocation looks like in our liquidity pool contract:

// call the `swap_callback` function on the callback contract
// For the swap to be successful the callback should send the specified
// `amount` of `token_in ` to the liquidity pool
let callback_client = ::Client::new (&env, &callback);
callback_client.swap_callback(&env.current_contract _address(),
 &token_in, &amount, &from
);

https://github.com/Uniswap/v3-core/blob/d8b1c635c275d2a9450bd6a78f3fa2484fef73eb/audits/tob/audit.pdf

30 31

After the swap_callback function successfully completes, we then run a quick check to
make sure our maths are all working out correctly:

Hint: This check is where the problem is...

// we check that at least the correct amount was sent
// to the liquidity pool
// if not we return the liquidity pool's `InNotSent` error.
if in_before + amount < token_in_client.balance(&env.current_contract_address())
{
 return Err(Error::InNotSent);
}

It's easy to miss why this is vulnerable, but it all rests in how the maths are compared. For the
sake of simplicity, let's imagine an LP with a 1:1 ratio of reserves (we'll also ignore fees/yield for
simplicity). The current reserves are ["500", "500"] , and you'd like to sell 5 of assetB
to buy 5 of assetA . So, the check would end up like this:

// the amount of `assetB` in reserves before the swap
let in_before = 500

// the amount of `assetB` you are "selling" into the pool
let amount = 5

// this is performed _after_ the callback function has completed, so it has the most up-to-date
// balance of the amount of `asssetB` held by this LP contract. In theory this _should_ be 505
// (the callback sent 5 `assetB`), but let's exploit the bug, and send only **1* * of `assetB`,
// so it's _really_ 501!
let current_balance = token_in_client.balance(&env.current_contract_address())

// the comparison goes like this, if we substitute the actual values:
if 500 + 5 < 501 {
 // throw an error
}

Note: For any curious minds out there, we don't check for equality == because the
callback may have sent more than we expected. If that's the case, we don't really
care - just more liquidity to swim in!

32 33

Since the maths check out, we could even send nothing to the liquidity pools, and stillreceive
the amount of asset we’re trying to purchase! The problem is simple: areversed comparison
operator. The fix is equally simple and we would write thecomparison like this:

// the fix would be to reverse the operator, so
// `if in_before + amount > token_in_client.balance() { Error }`
// This would assert that no less than amount was deposited.
if in_before + amount > token_in_client.balance(&env.current_contract_address())
{
 return Err(Error::InNotSent);
}

I know that’s a lot of text, so here’s the bullet-points summary of what’s happeningduring this swap:

• A user invokes the swap function on the liquidity pool contract, providing the address of the callback
contract as an argument

• The LP contract takes stock of the following items:

• The LP contract then invokes the swap_callback function of the callbackcontract
• the callback contract does whatever it’s programmed to do in the swap_callback function

• The LP contract does (incorrect, in this case) maths to make sure the paymenthas been received from
the callback contract

• If the maths work out (i.e., the payment from the callback function was”successful”), the LP contract will
send the amount of the “purchased” asset to the callback contract

• The LP contract then updates its reserves storage entries to reflect the new balances of the assets

• Which asset is being sent into the LP
• Which asset is being taken out of the LP
• The amounts of each asset on each side of the LP
• How much in fees (and in which asset) are expected for the swap

• As part of the swap_callback function, the callback contract is supposed to
send the correct amount of the “input” asset to the LP contract

Wait... What is

Actually Happening Here!???

? ??? ??

34 35

Alright, enough theory, you have tokens to retrieve! You’ll need to write and deploy a callback
contract that implements a swap_callback function. That function can do whatever you want, but
in order to receive your tokens back (and win this skirmish) you want it to NOT send any tokens of
either asset to the LP, thereby exploit the bug and “hack yourself” into getting your own funds back
from the malicious LP.

Following Uniswap’s pattern, the tokens from our LP are ultimately sent from the LP contract’s
balance to the callback contract’s balance. This makes it possible for the callback contract to be
a protocol and/or wallet, in which case the user’s funds are kept in that same wallet following the
swap. In order for this exploit to benefit a specific user, that user would need to deploy their own
callback contract, and include some mechanism for the funds to be transferred from the callback
contract to the user’s account.

Note: Transferring tokens from the callback contract back into your rpciege05
account is not required to complete this RPCiege skirmish. As long as you can
manage to exploit the vulnerability, RPCiege doesn’t care where your funds
ultimately land. Even if it’s in a burner callback contract.

Now, Go Get Your Tokens Here’s something to get you started, but it’s
not complete:

Once your callback contract is compiled and deployed, you must determine the correct way
to invoke the swap function on your liquidity pool. Your goal is to make a swap that returns
deposited tokens to you, without having to pay further into the LP. Good luck!

One more thing!! When you’re ready to invoke the swap function, don’t forget to include the _
nft_dest argument so you can claim the prize for which you’ve fought!

#![no_std]

// HAHAHAHAHA YOU THOUGHT!!!
// THIS IS SKIRMISH 5 YOU SILLY GOOSE!
// GET BUSY!

mod test;

36 37

Game Expansion

Skirmish VI

Following the downfall of that big bad boss, you probably basked in the glow of victory. Merriment
echoed in every corner, songs of triumph whispered by the wind. Yet, as they say, when one evil
falls, another often rises to take its place. Or in our case, a horde of them! With the veil of night, our
once serene lands have taken on a decidedly sinister aspect. Monsters of yesteryears’ tales, now
very much real, have decided to come out and play. Their playground? Our home!

Creeping ghouls, vampiric high society, moon-howling werewolves, and cackling witches, all with
an unfortunate taste for mayhem. Our everyday citizen would usually run, but surely not you.

We need to call contract CAKR5PX3O2VUN3MFRHZRZSZYAPERPXVLOB6EATB7LYJDPYGU6D7IFDKV
to set_traps preemptively so that when nightfalls we can capture the beasts even as they rise from their pits of
murky darkness.

Error::YouDied

 Good luck! Don’t

38 39

#![no_std]
#![feature(iter_array_chunks)]

use rand::rngs::SmallRng;
use rand::{Rng, SeedableRng};

use soroban_sdk::xdr::ToXdr;
use soroban_sdk::{
 contract, contracterror, contractimpl, contracttype, panic_with_error, Address, Env, IntoVal,
};

const WEEKS_IN_LEDGERS: u32 = 151200 * 4;

#[contracterror]
#[derive(Copy, Clone, Debug, PartialEq)]
#[repr(u32)]
pub enum Error {
 TrapNotSet = 1,
 YouDied = 2,
}

#[contracttype]
pub enum DataKey {
 TrapXY(Address),
}

#[contract]
pub struct Contract;

#[contractimpl]
impl Contract {
 pub fn set_trap(env: Env, x: u32, y: u32, source: Address) -> Result<(), Error> {}
 pub fn nightfall(env: Env, source: Address, _nft_dest: Option<Address>) -> Result<(), Error> {}
}

fn get_entropy(env: &Env, source: &Address) -> u64 {}

pub fn set_trap(env: Env, x: u32, y: u32, source: Address) -> Result<(), Error> {
 source.require_auth_for_args((&source,).into_val(&env));

 let trap_xy = (x, y);

 env.storage().temporary().set(&DataKey::TrapXY(source.clone()), &trap_xy);
 env.storage().temporary().bump(&DataKey::TrapXY(source), WEEKS_IN_LEDGERS);

 Ok(())
}

pub fn nightfall(env: Env, source: Address, _nft_dest: Option<Address>) -> Result<(), Error> {
 source.require_auth();

 let mut rng = SmallRng::seed_from_u64(get_entropy(&env, &source));

 let monster_xy = (rng.gen(), rng.gen());

 let trap_xy = env
 .storage()
 .temporary()
 .get::<DataKey, (u32, u32)>(&DataKey::TrapXY(source))
 .unwrap_or_else(|| panic_with_error!(&env, Error::TrapNotSet));

 if monster_xy != trap_xy {
 panic_with_error!(&env, Error::YouDied);
 }

 Ok(())
}

40 41

fn get_entropy(env: &Env, source: &Address) -> u64 {
 let sequence = u64::from(env.ledger().sequence());
 let mut entropy: u64 = u64::MIN;

 for [a, b, c, d] in source.to_xdr(env).iter().array_chunks() {
 entropy = entropy.wrapping_add(u64::from_be_bytes([a, 0, b, 0, c, 0, d, 0]));
 }

 // modulo 6 tolerance to account for the time delay between simulation and submission
 entropy = entropy.wrapping_add(sequence - sequence % 6);

 entropy
}

Skirmish VII

Troubles never come singly, do they? As if our monstrous infestation wasn’t enough, our wells
have gone from providing water to distributing curses. The citizens are changing, morphing
into beings of the undead! One moment, they’re arguing about the weather, the next - they’re
craving for brains! We quickly need to develop a purification contract which can take in a
random Bytes array of u8 molecules and return it back ordered from smallest to largest and
containing only pure prime values.

Once you’ve designed and deployed a contract containing a purify
function call which meets the criteria above, pass it to the run function of the
CCP7F5PC7I3CIR6DNIFFNMSHPAZXMDRDR5UCYIUEYIIJTZ2CVM4DYR2V contract to test
your purifier contract. The fate of all men, women and children rest in your hands.
Don’t muck it up!

42 43

Skirmish VIII

Will this torment never end? The townspeople are very upset (and who could blame them really
with all that spooky stuff happening). They cry for help from the kingdom’s famous investigative
duo, the Cipher and the Cryptographer. Though monsters and cursed wells have plagued the
citizens, the Cipher and the Cryptographer have unearthed a deeper, more subtle menace. A
secret code has been engraved into the very fabric of our world, manifesting as a sequence
of unpredictable events. These events lead to chaos and disorder, sprouting distractions like
monsters and cursed wells. Our reality is essentially a cipher waiting to be decoded!

The duo has put their collective knowledge to the test, writing tomes filled with enigmatic riddles and
conjectures. They’ve embedded clues within a `ContractEvent`. Use them to gauge if you’re onto the
sequence. Only the most astute can detect the pattern, reveal the code, and thereby remove the chaos at
its root.

To participate, you must call the contract
CC75LGT3V5L6IZGWDJHFJHSJIMCGWKEMQ6DFPP2JFE7ZGWJ25PEVE7FI and
try your luck in the guessing game. Should you guess incorrectly, observe the emitted
event. Decipher it, for it holds the clues you need to unlock the pattern.

The Dawn Watchman, vigilant as always, will bear witness to your trials. He warns, however, that “errors
lie not just in numbers but in their sequence.” Take heed, and bring order to the chaos.

https://soroban.stellar.org/docs/fundamentals-and-concepts/events

44 45

Skirmish IX

Amidst these challenges, a new invention has been crafted by the citizens—
a magical contract deployer identified by
CAQ6LJSUTMAXD3G2PAPLSEWRSTRBHWB4CQ6SBKBC75VF4GHTCA7CZ462,
meant to protect the realm. However, its produce is incomplete; like slingshots without
pockets.

Our Rabble Rouser, no stranger to agitation, has been haranguing the streets, demanding that this
ineptitude be fixed.

"We've been given a lock without a key!" he shouts, drawing attention and challenging the community's
builders to complete the contract.

You must develop a patched contract to use as an upgrade for the deployer’s defective spawn by adding
a missing argument that will make the contract complete and functional.

The Cryptographer winks at you, “Failing to upgrade is like trying to read a book missing its most crucial
chapter. Don’t leave the story half-told.”

https://soroban.stellar.org/docs/basic-tutorials/upgrading-contracts

46 47

Skirmish X

There’s been a disturbance in the tapestry of fate! A so-called “Fund of Destiny” has been
set up, but it’s rigged in favor of a dark power that plans to use its winnings to usher in an
era of torment. This fund relies on a future random number, and the Seer’s crystal ball is
cloudy with interference.

Oh no!

48 49

use rand::{rngs::SmallRng, Rng, SeedableRng};
use soroban_sdk::{contract, contractimpl, Address, Env, IntoVal};

use crate::types::{DataKey, Error};

#[contract]
#[allow(dead_code)]
pub struct Fund;

#[contractimpl]
#[allow(dead_code)]
impl Fund {
 /// Try winning the fund by providing your guess
 pub fn shuffle(
 env: Env,
 addr: Address,
 guess: u32,
 _nft_dest: Option<Address>,
) -> Result<(), Error> {
 addr.require_auth_for_args((&addr,).into_val(&env));

 let state = u64::MIN
 .wrapping_add(env.ledger().timestamp())
 .wrapping_add(env.ledger().sequence() as u64);
 let mut rng = SmallRng::seed_from_u64(state);

 if guess != rng.gen_range(0..1_000_000_000) {
 return Err(Error::WrongGuess);
 }

 // if the guess is correct, mint a new FundWon token
 env.storage().persistent().set::<DataKey, i128>(
 &DataKey::Balance(addr.clone()),
 &(env
 .storage()
 .persistent()
 .get(&DataKey::Balance(addr))
 .unwrap_or(0)
 + 1),
);

 Ok(())
 }
}

Cue the Blind Hermit, his mind tangled with truths unspeakable, who speaks in riddles: “The
wheel of chance is but a lie; future’s veil you must untie.”

You must predict this “unpredictable” sequence by sending a cross contract call to
CAO7ZQB2LHXEFTM6IX63CDNUV4ERGXMVJYABXU37KQYDSYTPOVA2QM2H. A precise
guess, made in the same ledger sequence, will crack the game wide open, diverting the ill-
gotten gains and perhaps changing our destiny.

50 51

AxeAxe

Ember

&

Your path has unexpectedly led you into the depths of Dreadwood Forest on
the night of the full moon. You’ve heard stories of these woods and the monsters
that emerge when the sun goes down. And you know these dangers are even more
menacing under the silvery gaze of the full moon’s light.

You are in a lush grass-covered clearing surrounded by dense pine trees when
you decide to make camp for the night. You must survive until morning by keeping
the monsters at bay with artificial light, or by trying something a little more creative.
Monsters can attack anytime once the sun sets (from 9 p.m. to 5 a.m.).

In addition to the dull axe, this contract address
CCCS6PRQC7AT6GC4BTY3H5CVPWSD57XM5J6ZAXYLMNA4QZ32YNDNB5LI, and some flint
hanging from your belt, you have a knapsack with two items in it:

You're a traveling rock peddler

journeying to a new town.

[1] Oil lamp and canister of oil
[2] Torch and sharpening stone
[3] Flask of whiskey and lucky amulet“As the moon rises, so do the shadows.”

https://www.youtube.com/playlist?list=PLmLehibUHqKMnGCiaRVmN5aCDkK7Xn_sH

https://www.youtube.com/playlist?list=PLmLehibUHqKMnGCiaRVmN5aCDkK7Xn_sH

52 53

Skirmish

XI

You’ve overthrown warlords, conquered monsters, and vanquished
the deeper menace. You’re exhausted (and rightfully so, that’s a lot of
stuff). But the battle isn’t over yet, and to continue, you’re going to need
an ally. You’ve heard whispers from your fellow soldiers of a legendary
figure whose battle prowess is only matched by her wisdom. They speak
of the astute archaeologist called Blossom Bernice Breydenblach (Bee),
and you think she can help. But there’s only one problem. She’s in
space.

To retrieve her, you must travel to the cosmos yourself, battle celestial
foes, and bring Bee back down to Earth.

First up, it’s time to get your old spaceship out of storage and make sure it’s got a valid registration.
You head to the storage facility, where your beloved ship, Tantive V, has been gathering dust for the
past fourteen years. You locate your storage unit and see that the registration paperwork is way out of
date.

To successfully register your ship and get it out of storage, you
must bump both an instance and persistent storage key from
within a Soroban smart contract. Keep in mind that to accomplish
this successfully the bumps must actually occur. It will not be
sufficient to merely include the bump calls in your contract.

54 55

You’ve just spent five hours at the DSV (Division of Space Vehicles) renewing your registration and
Tantive V is ready to go! You fire her up and blast off into space.

Entering into the planet Arda’s orbit, you see three separate space stations titled
Station::Persistent, Station::Temporary, and Station::Instance (don’t look at me,
I didn’t name them). You need to store these space stations into your ships database under the
appropriate storage types in order to run cross quantum analytics to decipher the station that contains
Bee to continue on your quest to bring her Earth-side.

Build, deploy and invoke a contract storing these Station::Persistent, Station::Temporary,
and Station::Instance keys inside a reasonable corresponding storage type.

Now that you’ve successfully boarded the space
station containing the illustrious Blossom Bernice
Breydenblach, it’s time to figure out where the heck

she is. You slink through the burnished corridor, boots clicking smartly on the metal floor.

You’re just about to round a corner when a large shadow steps into your path. Gasping, you
stumble backward, gazing up at a tall alien with a crimson head and luminescent grey eyes.

“I come in peace!” you say, throwing your hands up in surrender.

The alien looks at you blankly before glancing at a clipboard and asking, “Are you the driver
of spaceship Tantive V?”

“Y-y-yes,” you answer.

“Registration is expired,” the alien says before moving around you and drifting away down
the passageway.

Bewildered, you chase the alien down. “I just renewed my registration this morning! There’s
got to be some mistake!”

The alien stops. “Listen, kid,” it says, sparing you another look. “You can’t park there unless
you have valid registration. I would get that taken care of before we blast it to smithereens
with the Orbital Cannon.”

Renew your registration for good this time by submitting a ExtendFootprintTtlOp via a
“classic” Stellar transaction.

In order to claim your NFT pass your _nft_dest as a transaction memo.

Skirmish XIIISkirmish XII

56 57

Skirmish XIV

Alright. Your registration is finally up to date and it’s time to get to the
important stuff. These aliens actually seem pretty friendly, and a fellow
resembling a lobster even offers you a wave as you traverse the maze of
corridors. It’s time to admit that you probably won’t find Bee just wandering
around, so you flag down a passing alien with long green ears to ask for
directions.

“Hi there,” you say. “I’m looking for Blossom Bernice Breydenblach. Do
you know where she might be?”

“I am Ambassador Zillwow!” the alien announces.

You blink. “Umm, okay. That’s great. But I’m looking for Blossom
Bernice Breydenblach.”

Ambassador Zillwow turns and points to a window looking out into starry
space where you see a strawberry blonde-headed figure drift by.

She waves frantically, and you realize that this is Bee! Horrified, you
know you must save her. Submit a Stellar transaction with a singular
RestoreFootprintOp to save Bee and restore her back to the space
station.

In order to claim your NFT pass your _nft_dest as a transaction memo

58 59

RPCiege WILL RETURN.

Prepare yourself.

Need some help in the meantime? Check out the Soroban documentation, join
the developer Discord, and follow Soroban on Twitter.

Legal Disclaimer: RPCiege tasks are educational in nature and provide
a structured sandbox environment for learning how to use Stellar
software. All RPCiege tasks are performed on a testnet using test assets.
Nothing in these RPCiege instructions should be construed as financial,
legal or investment advice. Separately, if you choose to interact with
AMM functionality and liquidity pools using real assets on Stellar mainnet
then you should ensure you understand the technology, the assets and
that you are aware of the risks involved in such operations. Remember,
the value of crypto assets can be extremely volatile and unpredictable,
which can result in significant losses in a short time including possibly a
loss of total value.

https://soroban.stellar.org/docs
https://discord.gg/stellardev
https://twitter.com/SorobanOfficial
https://soroban.stellar.org
https://discord.gg/stellardev
https://twitter.com/SorobanOfficial

60

